

Reuse Enablement System (RES) Reuse Enablement System (RES) Reuse Enablement System (RES) Reuse Enablement System (RES)
Architecture StudyArchitecture StudyArchitecture StudyArchitecture Study

Prepared by:
NASA Earth Science Data Systems –
Software Reuse Working Group

July 23, 2007

Updated February 14, 2008

Earth Science Data Systems Software Reuse Working G roup

Editor:

James Marshall (Innovim / NASA Goddard Space Flight Center)

Contributing Working Group Members:

Angelo Bertolli (Innovim / NASA Goddard Space Flight Center)

Nancy Casey (Science Systems and Applications, Inc. / NASA Goddard Space Flight Center)

Bradford Castalia (University of Arizona)

Victor Delnore * (NASA Langley Research Center)

Robert R. Downs (Columbia University / NASA Socioeconomic Data and Applications Center)

Ryan Gerard (Innovim / NASA Goddard Space Flight Center)

Mary Hunter (Innovim / NASA Goddard Space Flight Center)

Shahin Samadi (Innovim / NASA Goddard Space Flight Center)

Mark Sherman (SGT Inc. / NASA Goddard Space Flight Center)

Ross Swick (National Snow and Ice Data Center, University of Colorado – Boulder)

Curt Tilmes (NASA Goddard Space Flight Center)

Robert Wolfe * (NASA Goddard Space Flight Center)

* Co-chair

Working Group Participants:

Nadine Alameh (MobiLaps LLC)

Howard Burrows (Autonomous Undersea Systems Institute / National Science Digital Library)

Yonsook Enloe (SGT Inc. / NASA Goddard Space Flight Center)

Stefan Falke (Washington University in St. Louis)

Michael Folk (National Center for Supercomputing Applications)

Emily Greene (Raytheon Company)

Tommy Jasmin (University of Wisconsin-Madison, Space Science and Engineering Center)

Steve Olding (Everware / NASA Goddard Space Flight Center)

Bill Teng (Science Systems and Applications, Inc. / NASA Goddard Space Flight Center)

Fred Watson (California State University, Monterey Bay)

Acknowledgements:

Michael Chyatte (Computer Science Corporation / NASA Goddard Space Flight Center) – SourceMotel
site running GForge

Thomas Clune (NASA Goddard Space Flight Center) – SourceMotel site running GForge

Kathy Fontaine (NASA Goddard Space Flight Center) – Earth Science Data System Working Group
Coordinator

Gene Major (Science Systems and Applications, Inc. / NASA Goddard Space Flight Center) – Global
Change Master Directory

Lola Olsen (NASA Goddard Space Flight Center) – Global Change Master Directory

Table of Contents

1.0 EXECUTIVE SUMMARY...1

2.0 BACKGROUND...3

3.0 APPLICABLE AND SUPPORTING DOCUMENTS4

4.0 REQUIREMENTS SUMMARY..5

4.1 DESCRIPTION/PURPOSE OF REQUIREMENTS...5
4.2 STATEMENT OF REQUIREMENTS...6

5.0 REVIEW OF AVAILABLE SOFTWARE PACKAGES..............8

5.1 GFORGE...9
5.2 SAVANE ...13
5.3 XOOPS..17
5.4 OTHER SOFTWARE PACKAGES INSPECTED...22

6.0 REVIEW OF AVAILABLE SYSTEMS...23

6.1 GLOBAL CHANGE MASTER DIRECTORY (GCMD)23

7.0 REVIEW SUMMARY...28

8.0 DECISION AND CONCLUSION ...30

8.1 NEXT STEP...31

9.0 REFERENCES ...31

APPENDIX A – SOFTWARE REUSE QUESTIONNAIRE...............................32

APPENDIX B – ENABLING SYSTEMS RECOMMENDATION.......33

APPENDIX C – GENERAL REQUIREMENTS...34

APPENDIX D – COCOMO 81 DESCRIPTION..36

APPENDIX E – SAVANE GAP ANALYSIS..37

APPENDIX F – XOOPS GAP ANALYSIS...52

APPENDIX G – GLOSSARY OF TERMS...60

1

1.0 Executive Summary

One of the primary goals of the Software Reuse Working Group, one of the NASA Earth Science
Data Systems (ESDS) Working Groups, is to save NASA and its partners time and money by
driving down the cost and time of system development and by reducing or eliminating expensive
redundancy and duplication in system development. To this end, the development of a Reuse
Enablement System (RES) is proposed as a way to provide members of the Earth science
software development community with easy access to reusable software assets. An architecture
study has been conducted to recommend a method for creating the proposed RES. The
recommendation offers a low-cost solution: implementing the XOOPS open source content
management system, modified as necessary to meet the requirements. Preliminary estimates
indicate that this system could be implemented in about 8 person-months of staff time.

As the number of Earth observing instruments and captured data volume increase, so do the
complexity and costs associated with software development in support of data transformation,
analysis, processing, management, and end-product implementation. Software development costs
can be high and the time needed to develop new applications can be considerable. The Earth
Observing missions have aided in amplifying knowledge of the Earth system by generating many
useful scientific data. To maximize the use of these data, the Earth science community must be
able to spend less time, money, and effort on software development and more on scientific work.
Reusing software, including open source software, has many benefits such as increased
productivity, reduced schedule, and improved quality. However, realizing these benefits for Earth
science has been challenging.

Our survey of the Earth science community has indicated that lack of a centralized domain-specific
software repository or catalog system addressing the needs of the Earth science community is a
major barrier to software reuse within the community. A trade study has been conducted to
examine a variety of sites as potential platforms to enable software reuse for the Earth science
community. The Reuse Enablement System (RES) Trade Study (dated November 17, 2005)
revealed that none of the evaluated repository or catalog systems can adequately satisfy the needs
of the community. Based on the results of the trade study, it is recommended that NASA should
provide the necessary support for a reuse enablement system dedicated to the Earth science
community that could be expanded to include the space science community. In support of the
recommendation, technology options for a reuse enablement system have been evaluated and this
report on the architecture study has been prepared to offer an expeditious and cost-effective
solution for such a system.

A number of software packages and systems were examined for their ability to meet our
requirements, as presented in the Reuse Enablement System (RES) Requirements document
dated September 18, 2006. This was done through both creating prototypes of systems and
examining existing systems that use the same software packages and systems. The results of our
study show that using XOOPS with appropriate modifications is the best option for creating a
Reuse Enablement System that will provide the community of Earth science software developers
with reusable software assets. A basic summary of our results is shown in the following table.

2

Approach
Studied

Requirements
Met

Requirements
Not Met

Requirements
Partially Met

Development
Effort Estimate
[staff-months]

XOOPS 40 9 5 8.12
Savane 24 20 10 34.01

GCMD 26 24 4 N/A

GForge 20 26 8 N/A

3

2.0 Background

To address the technical issues required to enable and facilitate reuse of software assets within
NASA’s Earth Science Enterprise (ESE), the Software Reuse Working Group was created as part
of the NASA Earth Science Data Systems (ESDS) Working Groups. This was the result of one of
the recommendations from the NASA HQ-commissioned Strategic Evolution of ESE Data Systems
(SEEDS) Study; the SEEDS activity became the ESDS Working Group activity. The Software
Reuse Working Group was chartered to oversee the process that will maximize the reuse potential
of such software components in order to: (1) drive down the cost and time of system development
and reduce/eliminate unnecessary duplication of effort; (2) increase flexibility and responsiveness
relative to Earth science community needs and technological opportunities; and (3) increase
effective and accountable community participation.

These objectives, the goals of the Working Group, include:

o recommending and supporting activities that help increase awareness of available
software components,

o increasing awareness of the value of reuse, provide needed processes and mechanisms,

o disseminating successful reuse strategies,

o and addressing related intellectual property and policy issues.

In the process of fostering greater software reuse across the Earth science community, a wide
variety of approaches have been considered to help meet differing needs and priorities. One such
approach has been the creation of the Software Reuse Working Group portal web site (see
reference 1 in Section 9). The portal contains information on reusable assets, resources such as
events, publications, open source software in general, and funding opportunities, as well as
information about activities relevant to reuse. Thus, it provides members of the community with a
central location for finding information about software reuse.

The goal of these software reuse activities is to encourage Earth science software developers to
make use of existing software assets (including open source software) to provide them with a
convenient way to locate and obtain such assets, and to encourage them to develop products for
reuse by others. The process of creating a new software product by reusing existing components
can be likened to the building of a house. The consumers will be able to buy a completed house,
but it is the builders who create the house from a variety of pre-fabricated components such as the
frame, windows, and plumbing. Alternatively, consumers may get parts to build their own house, if
these parts are well packaged for use directly by the consumers. By using tools, parts, and
methods that have been tested over time and are known to work well, it becomes easier and more
efficient for them to build the house. Likewise, if software developers can make use of existing
software components, it will be easier and more efficient for them to create new products.

Software released under an open source license is publicly available and other software
developers can read, modify, and redistribute the source code. Increased use of open source
licensing is recommended as an important enabler for software reuse. The licensing mechanism of
open source, compared to traditional software licensing, eliminates a significant barrier to code
sharing and thus helps to encourage and promote reuse. However, open source licensing is not

4

appropriate for all types of software and traditionally licensed software can still be reused.
Therefore, an effective reuse program has to accommodate both open source and non-open
source software.

To facilitate the software reuse process, developers need to be able to easily locate and evaluate
the available reusable artifacts. These were identified as important factors in a survey (OMB
#2700-0117) that was conducted to assess the reuse practices of the Earth science community.
See Appendix A for additional information about the survey.1 The results showed that when people
did not reuse software, the primary reasons were because they did not know where to look and
they did not know such reusable software existed. In addition, the survey revealed that a catalog or
repository for reusable artifacts is the best means of increasing software reuse within the Earth
science community. For this reason, the reusable artifacts should be classified and made available
through an appropriate reuse enablement system (e.g., libraries, catalogs, repositories) that can
facilitate searching and indexing. These systems are an essential ingredient in transforming ad-hoc
reuse (which is largely dependent on personal knowledge and word of mouth dissemination of
information about the availability of reusable artifacts) to systematic reuse as an integral part of the
software development process.

To achieve the above goal, the Software Reuse Working Group was tasked to research and
evaluate existing software catalog and repository systems within NASA, specifically the GCMD and
the NASA Open Source Agreement site, as possible alternatives to: (1) hosting software assets
for the Earth science community and/or (2) developing an Earth science Reuse Enablement
System by using existing enablement system reusable infrastructure software components. See
Appendix B for the report containing the original recommendation and the response by NASA HQ.
These sites as well as other NASA sites and a variety of non-NASA sites performing similar roles
were examined and reviewed in a trade study, the results of which showed that none of the
existing systems perform the role of providing software developers in the Earth science community
with the types of reusable assets they find most useful (see the Reuse Enablement System (RES)
Trade Study for more details). It is important to note that this study focuses on the needs of the
Earth science community and that the resulting recommendations are not trying to supplant the
many accessible open source sites that currently provide registries of general-purpose software.
With the need for a new system identified, the study investigated different architectures and
methods for creating a Reuse Enablement System that would meet the reuse needs of the Earth
science software development community. This document provides an outline of the formalized
requirements that were used to evaluate existing architectures (additional details are available in
the Reuse Enablement System (RES) Requirements document), the detailed evaluations for a
number of software packages and systems, and the results of our study.

3.0 Applicable and Supporting Documents

• Reuse Enablement System (RES) Trade Study (November 17, 2005)

Author: NASA ESDS Software Reuse WG

1 See also the Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, vol. 3, pp.
2196-2199, “Strategies for Enabling Software Reuse within the Earth Science Community” by Samadi et al. for preliminary
results from an earlier, almost identical survey or the Proceedings of the 2006 IEEE International Geoscience and Remote
Sensing Symposium, vol. 6, pp.2880-2883, “Software Reuse Within the Earth Science Community” by Marshall et al. for initial
results from the most recent survey.

5

• Reuse Enablement System (RES) Requirements (September 18, 2006, revised May 7, 2007)

Author: NASA ESDS Software Reuse WG

• Reuse Enablement System (RES) Use Cases (August 10, 2006)

Author: NASA ESDS Software Reuse WG

4.0 Requirements Summary

4.1 Description/Purpose of Requirements

The primary function of a Reuse Enablement System (RES) is to facilitate the distribution and
reuse of software development artifacts across the Earth science community, with possible
extension to space science. The reusable artifacts supported by the system will include software
components and other digital artifacts used in the software development process. It must also have
the ability to function as both a catalog and a repository, the main difference between the two being
that a catalog stores links to artifacts while a repository stores the actual artifacts themselves. By
being able to perform both tasks, the RES provides more options to the user and is able to go
beyond what either a catalog or a repository can do alone.

The primary users for the Reuse Enablement System are NASA-funded software developers
within the Earth science community. The other category of user is researchers and scientists in
various organizations who may be involved with NASA projects. Others are academic scientists or
members of research communities. In some cases, the users are also asset providers,
implementing software assets and delivering them to the RES for dissemination.

The Software Reuse Working Group conducted a workshop to identify the functional requirements needed for a
software Reuse Enablement System (RES) supporting the Earth science community. Several members of the
Working Group participated in this workshop and helped draft the initial set of use cases that were developed into
requirements. Over a period of several months, these requirements were refined through weekly and monthly
telecons and finalized during a review at the October 2004 Data Systems Working Group meeting. The result of
this work identified a number of requirements in the following areas: general, search, user registration, asset
usage, asset submission, content management, and system administration. These are described in detail in
Appendix C.

The general requirements include the kind of features that all systems are expected to exhibit, such
as supporting remote access through standard Internet browsers and allowing administrators to
generate reports including metrics. It also includes non-functional requirements such as the system
being in the Earth science domain, providing the types of assets that are most useful to software
developers, and providing a method for appraising the submitted assets for quality control
purposes. The focus on the Earth science domain was considered important because it enables
the repository to have an asset classification system specific to the needs of the target audience
and Earth science assets would not be obscured by large numbers of non-relevant artifacts. The
functional requirements can be viewed in the larger categories as noted above (see Appendix C) or

6

in smaller categories based on the specific functions they provide, the use cases for the system.2
For example, one obvious required function is that the system shall allow users to acquire an asset
from the system.

The requirements study was conducted for several months in 2006 to review the proposed
descriptive requirements and to create formal requirement statements from these requirements.
Several members helped draft the initial statements, which were then refined through weekly and
monthly telecons, being finalized at one of the monthly telecons. The formalized requirements are
given in the following section.

4.2 Statement of Requirements

The following are the titles of the formal requirements for the Reuse Enablement System. See
Appendix G for a glossary of terms and additional definitions. Descriptions of the requirements and
additional details about the development of these requirements can be found in the Reuse
Enablement System (RES) Requirements document.

Requirement Number and Title
1 – Users and User Information

1.1 – Support for User Types
R1.1.1 – Support for Consumer User

R1.1.2 – Support for Provider User

R1.1.3 – Support for Administrator User

R1.1.4 – Support for Content Manager User

1.2 – User Information Storage
R1.2.1 – Storage of Common User Information

R1.2.2 – Storage of Provider Information

1.3 – User Interface

R1.3.1 – User Profile Management

R1.3.2 – User Request Account Deletion
2 – Asset Storage and Management

2.1 – Asset Information Storage

R2.1.1 – Storage of Asset Information

R2.1.2 – Storage of Asset Resources

R2.1.3 – Storage of Asset Versions
R2.1.4 – Scanning of Asset Uploads

2.2 – Asset Discovery

R2.2.1 – Display Alphabetical Listing of Assets

R2.2.2 – Provide Search for Assets

R2.2.3 – Display Hierarchical Navigation of Assets
2.3 – Asset Management

R2.3.1 – Provider Registration of New Assets

R2.3.2 – Provider Modification of Assets

2 Reference 2 in Section 9 – General WG Documents, Reuse Enablement System (RES), Support and Enablement,
Reuse Enablement System Use Cases

7

R2.3.3 – Provider Approval of Asset Modifications

R2.3.4 – Provider Request for Asset Removal
R2.3.5 – Provider Categorization of Assets

2.4 – Asset Feedback

R2.4.1 – Collection of Comments About Assets

R2.4.2 – Collection of Quantitative Feedback

R2.4.3 – User Registration of Asset Usage
R2.4.4 – Feedback by Contacting Providers

R2.4.5 – Display Feedback

2.5 – Asset Metrics and Reports

R2.5.1 – Collect Number of Downloads

R2.5.2 – Collect Number of External Links Accessed
R2.5.3 – Collect Number of Registered Users for Assets

R2.5.4 –Summarize Ratings from Quantitative Feedback

2.6 – Asset Access Control

R2.6.1 – Limit Access of Certain Users from Certain Assets

3 – Send and Manage Notifications
3.1 – Send Notifications for Asset Events

R3.1.1 – Send Notification on Modification of Asset

R3.1.2 – Send Notification on Submission of New Feedback

3.2 – Send Notifications for System Events

R3.2.1 – Send Administrative Notification for Asset Information
R3.2.2 – Send Administrative Notification for System Information

3.2 – Notification Management

R3.2.1 – User Addition of Notifications for Assets

R3.2.2 – User Removal of Notifications

4 – System Operations
4.1 – System Feedback

R4.1.1 – Collection of System Problems

R4.1.2 – Collection of Suggestions

R4.1.3 – Feedback by Contacting Administrators

4.2 – System Policies Compliance, Security, and Privacy
R4.2.1 – Verification of Provider Information

R4.2.2 –Verification of Provider through Secondary Method or Contact

R4.2.3 – Security of Sensitive Transmitted Information

R4.2.4 – Security of Stored Information

R4.2.5 – Deletion of Users for Policy Enforcement
R4.2.6 – Protection of Private Information

R4.2.7 – Compliance with other Technical, Accessibility, and Security Requirements

R4.2.8 – Policies Availability to Users

4.3 – Repository and Catalog

R4.3.1 – Function as a Repository
R4.3.2 – Function as a Catalog

R4.3.3 – Selection of System Behavior by Provider

8

R4.3.4 – Enforcement of Asset Storage Limit

4.4 – Asset Cleanup
R4.4.1 – Asset Deprecation by Content Managers

R4.4.2 – Asset Removal by Administrators

4.5 – Data Integrity

R4.5.1 – Verification of Data by Providers

5.0 Review of Available Software Packages

We researched catalog and repository system software packages as an option for building a new
Reuse Enablement System (RES). This would allow us to reuse an existing software package that
provides most of our desired functionality as the foundation of the RES. Modifications would be
made as necessary to ensure that the RES meets all of the stated formal requirements. The
packages that were evaluated and reviewed as part of this study include:

1) GForge (see reference 3 in Section 9)
2) Savane (see reference 4 in Section 9)
3) XOOPS (see reference 5 in Section 9)

Some other packages were examined, but not reviewed in detail. A brief description of each of the
sites in the following list follows the detailed review of the sites listed above.

4) Fedora Digital Repository System (see reference 6 in Section 9)
5) JBoss Portal (see reference 7 in Section 9)
6) Liferay Portal (see reference 8 in Section 9)
7) Repository in a Box (see reference 9 in Section 9)

This section describes the result of our study on how well these software packages and existing
systems meet the formal requirements defined in the previous section. The review includes
sections on the installation of the package/system, how well it meets our requirements, a gap
analysis of what would be necessary to meet any of our requirements that the package/system
does not currently meet, and maintenance and support.

As part of our evaluation, we include a level of effort estimate in the gap analysis section for the
requirements that the systems or packages do not meet or only partially meet. The development
effort is based on Barry Boehm's original Constructive Cost Model (COCOMO), the details of which
are provided in Appendix D. The software is generally considered semi-detached software
because the code being modified is somewhat modular. The software must operate within (is
partially embedded in) an open-source software application that is not considered overly complex.
Because of this we have assigned COCOMO estimates according to complexity:

9

Complexity Classification

2 – 3 Organic

4 – 9 Semi-embedded

10 Embedded

5.1 GForge

GForge is a collaborative development tool based on the SourceForge code. It is a fork of
SourceForge code version 2.61, and at the time of writing is currently at version 4.5. Some of the
GForge features include message forums, mailing lists, source code management repositories like
CVS and Subversion, access control to repositories, role-based access controls, document
management with approval queue, and command line interface.

This review of GForge is based primarily on the SourceMotel system (see reference 10 in Section
9) at the NASA Goddard Space Flight Center. This web site runs a customized version of the
GForge software version 4.0. We received a demonstration of the site from an experienced user of
the system and talked with one of the system administrators about how the site was created and
configured and how it is currently maintained.

5.1.1 Installation
The installation requirements for GForge, as outlined in the online manual, are as follows:

1. Linux operating system

2. PostgreSQL 7.3 or later

3. Apache 1.3.22 or later

4. openssl 0.9.4 or later

5. mod_ssl 2.4.10 or later

6. PHP 4.0.4 or later built with command line interface support

7. php-pgsql

8. php-mbstring

Additional software packages are listed as optional and include, for example, a PHP accelerator
(highly recommended by GForge) and GNU Mailman and Python for mailing list support. The
manual also indicates that GForge can be installed on Debian systems using the apt-get
command, and there are RPM packages available for installation on RPM-based systems such as

10

Fedora Core and Red Hat Enterprise Linux. The use of installation packages greatly simplifies the
installation process.

The latest version of GForge is 4.5, and according to the SourceMotel staff, it is a good version. It
combines PHP, static HTML, and a number of other packages (such as CVS, Mailman, and
PostgreSQL) together to provide a collaborative development environment. It is not entirely
database-driven however, as it needs to create a new UNIX user account. Also, it integrates with
many different components across the system and takes control over a variety of tasks, performing
them automatically. This means that GForge cannot easily be run on a system that is being shared
and used for multiple purposes; it needs to have its own system. System events are typically
strongly tied to CVS. GForge tends to be built for the latest (unstable) version of the Debian Linux
operating system, but runs on any Linux operating system.

5.1.2 Meeting Requirements
The following table indicates how well GForge meets our stated requirements. Explanatory notes
follow, when applicable.

Table 1 – GForge Requirements Matching

Requirement Number and Title Meets
Requirement?

1 – Users and User Information
1.1 – Support for User Types

R1.1.1 – Support for Consumer User YES

R1.1.2 – Support for Provider User YES

R1.1.3 – Support for Administrator User PARTIAL

R1.1.4 – Support for Content Manager User NO
1.2 – User Information Storage

R1.2.1 – Storage of Common User Information YES

R1.2.2 – Storage of Provider Information NO

1.3 – User Interface

R1.3.1 – User Profile Management YES
R1.3.2 – User Request Account Deletion NO

2 – Asset Storage and Management

2.1 – Asset Information Storage

R2.1.1 – Storage of Asset Information PARTIAL

R2.1.2 – Storage of Asset Resources PARTIAL
R2.1.3 – Storage of Asset Versions YES

R2.1.4 – Scanning of Asset Uploads NO

2.2 – Asset Discovery

R2.2.1 – Display Alphabetical Listing of Assets NO

R2.2.2 – Provide Search for Assets YES
R2.2.3 – Display Hierarchical Navigation of Assets YES

2.3 – Asset Management

R2.3.1 – Provider Registration of New Assets YES

11

Requirement Number and Title Meets
Requirement?

R2.3.2 – Provider Modification of Assets YES

R2.3.3 – Provider Approval of Asset Modifications PARTIAL

R2.3.4 – Provider Request for Asset Removal YES
R2.3.5 – Provider Categorization of Assets YES

2.4 – Asset Feedback

R2.4.1 – Collection of Comments About Assets NO

R2.4.2 – Collection of Quantitative Feedback NO

R2.4.3 – User Registration of Asset Usage NO
R2.4.4 – Feedback by Contacting Providers PARTIAL

R2.4.5 – Display Feedback YES

2.5 – Asset Metrics and Reports

R2.5.1 – Collect Number of Downloads NO

R2.5.2 – Collect Number of External Links Accessed NO
R2.5.3 – Collect Number of Registered Users for Assets NO

R2.5.4 –Summarize Ratings from Quantitative Feedback NO

2.6 – Asset Access Control

R2.6.1 – Limit Access of Certain Users from Certain Assets NO

3 – Send and Manage Notifications
3.1 – Send Notifications for Asset Events

R3.1.1 – Send Notification on Modification of Asset NO

R3.1.2 – Send Notification on Submission of New Feedback NO

3.2 – Send Notifications for System Events

R3.2.1 – Send Administrative Notification for Asset Information PARTIAL
R3.2.2 – Send Administrative Notification for System Information YES

3.2 – Notification Management

R3.2.1 – User Addition of Notifications for Assets NO

R3.2.2 – User Removal of Notifications NO

4 – System Operations
4.1 – System Feedback

R4.1.1 – Collection of System Problems YES

R4.1.2 – Collection of Suggestions YES

R4.1.3 – Feedback by Contacting Administrators YES

4.2 – System Policies Compliance, Security, and Privacy
R4.2.1 – Verification of Provider Information NO

R4.2.2 –Verification of Provider through Secondary Method or Contact NO

R4.2.3 – Security of Sensitive Transmitted Information YES

R4.2.4 – Security of Stored Information YES

R4.2.5 – Deletion of Users for Policy Enforcement NO
R4.2.6 – Protection of Private Information YES

R4.2.7 – Compliance with other Technical, Accessibility, and Security Requirements PARTIAL

R4.2.8 – Policies Availability to Users NO

12

Requirement Number and Title Meets
Requirement?

4.3 – Repository and Catalog

R4.3.1 – Function as a Repository YES

R4.3.2 – Function as a Catalog PARTIAL
R4.3.3 – Selection of System Behavior by Provider NO

R4.3.4 – Enforcement of Asset Storage Limit NO

4.4 – Asset Cleanup

R4.4.1 – Asset Deprecation by Content Managers NO

R4.4.2 – Asset Removal by Administrators NO
4.5 – Data Integrity

R4.5.1 – Verification of Data by Providers NO

5.1.3 Gap Analysis
The major task here is likely to be removing features that we do not require and do not wish to
offer. However, some customization would be necessary to make a GForge system meet our
requirements. New user accounts are approved automatically by default; this needs to be
changed. This is one of the modifications the SourceMotel staff made to their system.
Automatically mirroring posts made in the web forums to the e-mail mailing lists would be very
difficult. Incorporating a feedback system would be difficult as well because it needs to work with
the database. GForge met the smallest number of requirements of the systems we examined, so
we did not do a detailed gap analysis since it was clear that other systems would be better choices.

5.1.4 Maintenance and Support
Since GForge is really a collection of smaller software packages joined together, the ease of
upgrades depends at least partially on the packages that compose the GForge system. Testing
upgrades can be difficult, and it can take a lot of time to understand how the new version operates.
For these reasons and because frequent downtime is necessary for configuration, the SourceMotel
staff suggested that two systems be used with GForge – one as the operational system and the
second as the development system. This is how they operate their system. Upgrades and other
modifications are tested in the development system until the staff is sure they work properly, and
then the changes are made in the operational system.

The SourceMotel staff also noted some other difficulties in maintaining and supporting the system.
In order to change machines, the name of the host must be changed in multiple places. This
causes some confusion and makes it difficult to ensure that the host change has been completed
properly. With sufficient modifications, the SourceMotel staff solved this issue, but it did cause
problems for them. Users and projects cannot be deleted through the standard GForge system
interface, causing a problem if user names or project names are to be recycled and reused. Users
can be suspended, but projects are essentially permanent. It may be possible to delete users
and/or projects by other means, e.g., direct manipulation of the database, but even this may not
guarantee success because of the tight integration of GForge with the system. Since GForge takes
over tasks such as maintenance of the system’s password file, deleting users manually can result
in GForge recreating the user account based on information in its database, in an attempt to keep
itself synchronized with the host system. Many cron jobs are used to execute tasks at specific
intervals, and this timing is critical to proper execution. However, the behavior is undefined, and
there is no obvious logic behind the timing settings. The SourceMotel staff learned through
experience that modifying the cron job timings can break the GForge system, so they must be left

13

as-is in order for the system to function. Currently, Subversion is not supported, but there are plans
to provide support for it in the future. Also, the unique naming conventions of GForge can create
problems where, for example, new mailing lists created in Mailman may end up colliding with
existing lists or be named non-intuitively.

An additional point to note is that GForge offers professional support for a fee, and the
SourceMotel staff did make use of this. However, they also ran into complications that limited the
amount of help they were able to obtain from the GForge staff. It was difficult to get both sides to
agree on how things should be done, which resulted in an “all-or-nothing” scenario where the
GForge staff really only wanted to do things themselves their way.

5.1.5 Summary
The GForge system provides a good environment for collaborative development, but it is also a
very fragile system. It is relatively easy to break, and it is not always clear why things work the way
they do. The SourceMotel staff’s opinion was that GForge should be used only if we plan to use
most of the features it provides. Out of our 54 requirements, GForge meets 20, partially meets 8,
and does not meet 26.

5.2 Savane

Savane is a Web-based Libre Software hosting system based on the SourceForge software. It was
originally designed to be an installation of the SourceForge 2.0 software, but became its own
package after the SourceForge software became proprietary. Savane provides a collaborative
development environment, and we tested version 1.4.

5.2.1 Installation
The installation requirements for Savane, as provided in the installation package, are as follows:

1. Apache 1.3.x or greater

2. Perl 5.6 or greater

3. PHP 4.1.0 or greater

4. MySQL 3.x or greater

Some additional GNU/Linux utilities including exim or sendmail are required, and some Perl
modules must also be installed.

Savane should be installed on its own server or in a virtual server environment because it makes
use of ftp, ssh, cvs/subversion, and other software that require it to manipulate the system users
and groups.

The following is a description of the installation and configuration of Savane 1.4.

1. Configure and make the scripts for installation. This first step checks for software
dependencies and allows you to set up basic definitions such as Savane's configuration,
library, and binary directories.

2. Make the essential parts of Savane.

14

3. Make the database by using a db admin account, and create a db user for Savane to use.

4. Make the Savane configuration files by answering a series of questions on how you want
Savane to operate

5. Install Savane by creating a savane cron job and logrotate job.

5.2.2 Meeting Requirements
The following table indicates how well Savane meets our stated requirements. Explanatory notes
follow, when applicable.

Table 2 – Savane Requirements Matching

Requirement Number and Title Meets
Requirement?

1 – Users and User Information
1.1 – Support for User Types

R1.1.1 – Support for Consumer User YES

R1.1.2 – Support for Provider User YES

R1.1.3 – Support for Administrator User PARTIAL

R1.1.4 – Support for Content Manager User PARTIAL
1.2 – User Information Storage

R1.2.1 – Storage of Common User Information YES

R1.2.2 – Storage of Provider Information NO

1.3 – User Interface

R1.3.1 – User Profile Management YES
R1.3.2 – User Request Account Deletion YES

2 – Asset Storage and Management

2.1 – Asset Information Storage

R2.1.1 – Storage of Asset Information PARTIAL

R2.1.2 – Storage of Asset Resources YES
R2.1.3 – Storage of Asset Versions YES

R2.1.4 – Scanning of Asset Uploads NO

2.2 – Asset Discovery

R2.2.1 – Display Alphabetical Listing of Assets PARTIAL

R2.2.2 – Provide Search for Assets YES
R2.2.3 – Display Hierarchical Navigation of Assets PARTIAL

2.3 – Asset Management

R2.3.1 – Provider Registration of New Assets YES

R2.3.2 – Provider Modification of Assets YES

R2.3.3 – Provider Approval of Asset Modifications PARTIAL
R2.3.4 – Provider Request for Asset Removal YES

R2.3.5 – Provider Categorization of Assets NO

2.4 – Asset Feedback

15

Requirement Number and Title Meets
Requirement?

R2.4.1 – Collection of Comments About Assets NO

R2.4.2 – Collection of Quantitative Feedback NO

R2.4.3 – User Registration of Asset Usage NO
R2.4.4 – Feedback by Contacting Providers PARTIAL

R2.4.5 – Display Feedback YES

2.5 – Asset Metrics and Reports

R2.5.1 – Collect Number of Downloads NO

R2.5.2 – Collect Number of External Links Accessed NO
R2.5.3 – Collect Number of Registered Users for Assets NO

R2.5.4 –Summarize Ratings from Quantitative Feedback NO

2.6 – Asset Access Control

R2.6.1 – Limit Access of Certain Users from Certain Assets NO

3 – Send and Manage Notifications
3.1 – Send Notifications for Asset Events

R3.1.1 – Send Notification on Modification of Asset NO

R3.1.2 – Send Notification on Submission of New Feedback NO

3.2 – Send Notifications for System Events

R3.2.1 – Send Administrative Notification for Asset Information PARTIAL
R3.2.2 – Send Administrative Notification for System Information PARTIAL

3.2 – Notification Management

R3.2.1 – User Addition of Notifications for Assets NO

R3.2.2 – User Removal of Notifications NO

4 – System Operations
4.1 – System Feedback

R4.1.1 – Collection of System Problems YES

R4.1.2 – Collection of Suggestions YES

R4.1.3 – Feedback by Contacting Administrators YES

4.2 – System Policies Compliance, Security, and Privacy
R4.2.1 – Verification of Provider Information NO

R4.2.2 –Verification of Provider through Secondary Method or Contact NO

R4.2.3 – Security of Sensitive Transmitted Information YES

R4.2.4 – Security of Stored Information YES

R4.2.5 – Deletion of Users for Policy Enforcement YES
R4.2.6 – Protection of Private Information YES

R4.2.7 – Compliance with other Technical, Accessibility, and Security Requirements PARTIAL

R4.2.8 – Policies Availability to Users NO

4.3 – Repository and Catalog

R4.3.1 – Function as a Repository YES
R4.3.2 – Function as a Catalog YES

R4.3.3 – Selection of System Behavior by Provider YES

R4.3.4 – Enforcement of Asset Storage Limit NO

16

Requirement Number and Title Meets
Requirement?

4.4 – Asset Cleanup

R4.4.1 – Asset Deprecation by Content Managers NO

R4.4.2 – Asset Removal by Administrators YES
4.5 – Data Integrity

R4.5.1 – Verification of Data by Providers YES

5.2.3 Gap Analysis

A full description of the gap analysis for Savane can be found in Appendix E. A summary of the
analysis appears in the following section, Development Effort.

5.2.4 Development Effort
Using the complexity as a measure of the classification, along with our estimate for the number of
lines of code necessary to make Savane meet each of our unmet or partially met requirements, we
estimated the development effort for each component according to the equations in Appendix D
and the complexity/classification table at the beginning of this section. The results are shown in the
following table.

Requirement Lines of Code Complexity Effort
R1.1.3 550 5 1.54

R1.1.4 1600 9 6.33

R1.2.2 150 5 0.36
R2.1.1 650 6 1.85

R2.1.4 275 10 0.76

R2.2.1 5 3 0.01

R2.2.3 650 6 1.85

R2.3.3 1150 10 4.26
R2.3.5 510 5 1.41

R2.4.1 550 5 1.54

R2.4.2 510 5 1.41

R2.4.3 110 5 0.25

R2.4.4 60 5 0.13
R2.5.1 510 5 1.41

R2.5.2 510 5 1.41

R2.5.3 500 3 1.16

R2.5.4 500 3 1.16

R2.6.1 600 5 1.69
R3.1.1 100 3 0.21

R3.1.2 100 3 0.21

R3.2.1 100 3 0.21

R3.2.2 100 3 0.21

R3.3.1 600 5 1.69
R3.3.2 100 3 0.21

R4.2.1 600 6 1.69

17

Requirement Lines of Code Complexity Effort
R4.2.2 110 5 0.25
R4.2.7 150 3 0.33

R4.2.8 100 2 0.21

R4.3.4 10 4 0.02

R4.4.1 105 5 0.24
Total Development Effort [staff-months] 34.01
Total Development Effort [staff-years] 2.83

Our estimates indicate that it would take approximately 2.83 staff-years of development effort to
modify Savane to meet our requirements.

5.2.5 Maintenance and Support
We determined that the maintenance effort for Savane was similar to the complexity because
Savane does not provide an API for creating modules, or other ways of separating our changes
from their code. This means a large effort must be taken to incorporate our changes as future
versions of Savane are released. Therefore, we based the level of maintenance on the complexity,
using our own judgment to modify the score.

5.2.6 Summary
Savane is a complex system that would require many changes to meet our requirements. The level
of maintenance required is also relatively high, since it is difficult, if not impossible, to separate
modifications we would make from the base code of the system. Out of our 54 requirements,
Savane meets 24, partially meets 10, and does not meet 20.

5.3 XOOPS

XOOPS is an acronym for eXtensible Object Oriented Portal System. It is a Content Management
System (CMS) written in PHP, and it uses the MySQL relational database. It provides a web-based
CMS, and its basic functions can be modified through the use of modules provided with the
package or downloaded from the Module Repository at the official web site. We used version
2.0.13.2, released on Oct. 28, 2005 for our tests; this was the most recent stable release at the
time we performed our evaluations. The current latest stable release is version 2.0.16.

5.3.1 Installation
The installation requirements for XOOPS, as outlined in the install wizard, are as follows:

1. WWW server (Apache, IIS, Roxen, etc.)

2. PHP 4.1.0 and higher (4.1.1 or higher recommended)

3. MySQL Database 3.23.XX

Besides installing these programs properly and providing access to a database, there is little that
needs to be done. The package’s “html” directory contents must be copied to a web-accessible
directory on the system in order to install and create the new XOOPS site. When running the

18

installation wizard, it will alert you to the few additional steps that need to be performed prior to
installation; these are easy to complete.

Installation of XOOPS is very simple. Pointing a web browser to the “html” directory of the package
begins the installation wizard, and following the on-screen instructions performs the installation. If
there are any problems during the process, the wizard will point them out. Once they are corrected,
the installation process may be resumed or restarted. In some cases, if the installation was halted
after some database tables were created, those tables must be removed before restarting the
installation, otherwise it will halt again because it cannot create (or overwrite) the existing tables.
Completion of the installation process provides a basic XOOPS site, but little functionality. A
number of modules are provided in the XOOPS package, and they can be installed easily to
provide a more functional web site. We did this, and our analysis is based primarily on this
installation. Additional modules that may provide additional functionality are available at the official
web site’s module repository.

We encountered no real trouble with the installation process of the system or provided modules.
However, one point worth noting is that the URL of the XOOPS site is initially set during the
installation process. Changing this may not be a very simple matter however, so some difficulties
could arise in moving a XOOPS site to a new web address. Most of the setup time was spent
configuring the system and modules because there are many options to understand and settings to
select.

5.3.2 Meeting Requirements
The following analysis is based on the functionality provided by the default modules included in the
installation package. Additional functionality may be provided by other modules in the repository at
the official site. If it is known that additional modules can provide functionality that the default ones
cannot, a note will be made of this.

The following table indicates how well XOOPS meets our stated requirements. Explanatory notes
follow, when applicable.

Table 3 – XOOPS Requirements Matching

Requirement Number and Title Meets
Requirement?

1 – Users and User Information

1.1 – Support for User Types
R1.1.1 – Support for Consumer User YES

R1.1.2 – Support for Provider User YES

R1.1.3 – Support for Administrator User YES

R1.1.4 – Support for Content Manager User YES

1.2 – User Information Storage
R1.2.1 – Storage of Common User Information YES

R1.2.2 – Storage of Provider Information YES

1.3 – User Interface

R1.3.1 – User Profile Management YES

R1.3.2 – User Request Account Deletion YES
2 – Asset Storage and Management

19

Requirement Number and Title Meets
Requirement?

2.1 – Asset Information Storage

R2.1.1 – Storage of Asset Information YES

R2.1.2 – Storage of Asset Resources YES
R2.1.3 – Storage of Asset Versions YES

R2.1.4 – Scanning of Asset Uploads NO

2.2 – Asset Discovery

R2.2.1 – Display Alphabetical Listing of Assets NO

R2.2.2 – Provide Search for Assets YES
R2.2.3 – Display Hierarchical Navigation of Assets YES

2.3 – Asset Management

R2.3.1 – Provider Registration of New Assets YES

R2.3.2 – Provider Modification of Assets YES

R2.3.3 – Provider Approval of Asset Modifications PARTIAL
R2.3.4 – Provider Request for Asset Removal YES

R2.3.5 – Provider Categorization of Assets YES

2.4 – Asset Feedback

R2.4.1 – Collection of Comments About Assets YES

R2.4.2 – Collection of Quantitative Feedback YES
R2.4.3 – User Registration of Asset Usage NO

R2.4.4 – Feedback by Contacting Providers PARTIAL

R2.4.5 – Display Feedback YES

2.5 – Asset Metrics and Reports

R2.5.1 – Collect Number of Downloads YES
R2.5.2 – Collect Number of External Links Accessed YES

R2.5.3 – Collect Number of Registered Users for Assets NO

R2.5.4 –Summarize Ratings from Quantitative Feedback YES

2.6 – Asset Access Control

R2.6.1 – Limit Access of Certain Users from Certain Assets YES
3 – Send and Manage Notifications

3.1 – Send Notifications for Asset Events

R3.1.1 – Send Notification on Modification of Asset YES

R3.1.2 – Send Notification on Submission of New Feedback YES

3.2 – Send Notifications for System Events
R3.2.1 – Send Administrative Notification for Asset Information YES

R3.2.2 – Send Administrative Notification for System Information YES

3.2 – Notification Management

R3.2.1 – User Addition of Notifications for Assets YES

R3.2.2 – User Removal of Notifications YES
4 – System Operations

4.1 – System Feedback

R4.1.1 – Collection of System Problems YES

20

Requirement Number and Title Meets
Requirement?

R4.1.2 – Collection of Suggestions YES

R4.1.3 – Feedback by Contacting Administrators YES

4.2 – System Policies Compliance, Security, and Privacy
R4.2.1 – Verification of Provider Information YES

R4.2.2 –Verification of Provider through Secondary Method or Contact NO

R4.2.3 – Security of Sensitive Transmitted Information PARTIAL

R4.2.4 – Security of Stored Information YES

R4.2.5 – Deletion of Users for Policy Enforcement YES
R4.2.6 – Protection of Private Information YES

R4.2.7 – Compliance with other Technical, Accessibility, and Security Requirements PARTIAL

R4.2.8 – Policies Availability to Users NO

4.3 – Repository and Catalog

R4.3.1 – Function as a Repository NO
R4.3.2 – Function as a Catalog YES

R4.3.3 – Selection of System Behavior by Provider NO

R4.3.4 – Enforcement of Asset Storage Limit YES

4.4 – Asset Cleanup

R4.4.1 – Asset Deprecation by Content Managers NO
R4.4.2 – Asset Removal by Administrators YES

4.5 – Data Integrity

R4.5.1 –Verification of Data by Providers PARTIAL

Requirements 2.2.1, 4.3.1, and 4.3.3 can be met through the use of another existing module. For
example, the module called PD Downloads that is available on the XOOPS official module
repository provides all of the functions necessary to meet these three requirements. It provides an
option to browse assets by alphabetical listing and it allows users to upload assets to be stored on
the system, which allows the Provider to choose how his/her asset is stored (locally as for a
repository, or remotely as for a catalog).

Requirement 1.2.2, Storage of Provider Information, can be met easily by using some of the pre-
defined user profile information slots even though they are not specifically designated as
organization and area of expertise.

Requirement 2.3.4, Provider Request for Asset Removal, is met through Requirement 4.1.3,
Feedback by Contacting Administrators. Although there is no specific mechanism for requesting
the removal of an asset, Providers can always contact Administrators to make such a request.

Requirements 4.1.1, Collection of System Problems, and 4.1.2, Collection of System Suggestions,
are met through Requirement 4.1.3, Feedback by Contacting Administrators. The only specific
feature for reporting bug or sending suggestions is a method for reporting broken links and
download files, but since the Administrator can always be contacted, these requirements are all
met.

21

Requirement 4.2.1, Verification of Provider Information, is met because the system can be
configured to avoid automatically accepting new registrations, thereby giving Administrators time to
complete the verification process.

5.3.3 Gap Analysis
A full description of the gap analysis for XOOPS can be found in Appendix F. A summary of the
analysis appears in the following section, Development Effort.

5.3.4 Development Effort
Using the complexity as a measure of the classification, along with our estimate for the number of
lines of code necessary to make XOOPS meet each of our unmet or partially met requirements, we
estimated the development effort for each component according to the equations in Appendix D
and the complexity/classification table at the beginning of this section. The results are shown in the
following table.

Requirement Lines of Code Complexity Effort
R2.1.4 315 4 0.82
R2.2.1 10 2 0.02

R2.3.3 1050 3 2.53

R2.4.3 510 3 1.18

R2.4.4 210 3 0.47

R2.5.3 500 1 1.16
R4.2.2 210 3 0.47

R4.2.3 10 1 0.02

R4.2.7 150 2 0.33

R4.2.8 100 1 0.21

R4.3.1 10 1 0.02
R4.3.3 100 1 0.21

R4.4.1 105 3 0.23

R4.5.1 205 3 0.45
Total Development Effort [staff-months] 8.12
Total Development Effort [staff-years] 0.68

Our estimates indicate that it would take approximately 0.68 staff-years of development effort to
modify XOOPS to meet our requirements.

5.3.5 Maintenance and Support
We determined that the maintenance effort for XOOPS was less costly than the complexity
because XOOPS provides an API for creating modules. This means our code is more isolated, and
can be maintained separately through upgrades of XOOPS. The only time the maintenance may
be high is if XOOPS modifies the API, but that is not taken into consideration for the estimates
here.

The modular nature of XOOPS allows for easier maintenance and support. If a problem arises, it
should be traceable to one particular module that is independent of the rest. This allows the site to
maintain its integrity and not lose much functionality while the problem(s) with one module are
being solved. It also allows updating of individual components of the system as modules are

22

updated and upgraded. The modules can be maintained separately from the XOOPS core system
itself.

Support for XOOPS is good, with the official site operating a forum for support, where users can
assist each other. This is separated into topic areas, including general, community support,
modules support, themes and templates support, and XOOPS development, each of which has a
number of sub-areas for particular types of problems and support.

5.3.6 Summary
XOOPS is able to meet most of our requirements with its basic installation and the default modules
provided with the package. A few requirements that are not met by the default modules can be met
by installing one or more other modules from the module repository on the official site. Some
requirements are considered partially met as they have no dedicated feature, but can be
implemented by means already available on the system. Together, these factors reduce the
amount of customization necessary to make a XOOPS system meet all of our stated requirements.
Also, the modular structure of XOOPS simplifies maintenance since code changes can be isolated
in their own modules independent of the base code of the system. Out of our 54 requirements,
XOOPS meets 40, partially meets 5, and does not meet 9.

5.4 Other Software Packages Inspected

There are other software packages for creating software catalogs and repositories in addition to the
ones reviewed here. Some of them provide very similar functionality; for example, most Content
Management Systems will function in much the same was as XOOPS does. We could not
evaluate every possible package in detail, so chose some representative examples. We also
received some feedback from members of the Earth science community about other packages we
had not seen previously. We considered these options as well, but found that they were generally
not suitable for our needs. This section provides a brief description of these packages and the
reasons they were not examined in detail. In all cases, time constraints were an issue. We did not
have time to implement prototypes of all systems we examined, so we were forced to choose only
a few for prototyping. The other packages listed here may be suitable, but on our initial
examination, they did not appear to be as simple to create or use as the ones reviewed above.

The Fedora Digital Repository System is open source software repository system developed by
Cornell University Information Science and the University of Virginia Library. It is designed to
manage digital content, local or remote, through the use of a digital object which describes the
objects. All functions are web services and have fine-grained control access policies. The Fedora
web site lists library collections management, multimedia authoring systems, archival repositories,
institutional repositories, and digital libraries for education as some applications and domains
where Fedora has been found useful. We examined existing instances of this system, and found
that there were no user accounts, which is an important requirement for our desired system.
Without users, it lacks sufficient support for automatic notifications. It also appeared to be stronger
on back end features, with limited front-end abilities, and lacked support for uploading assets by
users, so we felt that this system did not meet our requirements well enough to be considered in
detail.

JBoss Portal is an open source web portal system based on open standards such as the Content
Repository for Java Technology API (JSR-170). Its features include the portal and portal container,
themes and layouts, user and group functionality, permissions management, content management
system, and message boards. However, it appears to be primarily a set of Java libraries that need

23

to be combined and built into an actual system. It also does not handle the web interface of a front
end for the system. This makes it more complicated than other options, so it was not reviewed in
detail.

Liferay Portal is an open source portal system designed to help provide a consolidated view of
disparate applications. Its features include themes, sub-themes, personalization, CMS, application
agnostic server, database agnostic, out of the box portlets, community based portlets, and
administration of users, organizations, locations, and roles via a GUI. It appeared to be a generic
content management system that did not seem to have support for asset reuse readily available. It
would require a large amount of modifications and development effort to make it meet our
requirements, so we did not review it in detail.

The Repository in a Box (RIB) software package was developed by the Innovative Computing
Laboratory at the University of Tennessee. It is used to create web-based metadata repositories
where metadata is considered by RIB to be information that describes reusable objects such as
software. The repositories do not actually store any assets on the RIB system itself and since they
do not host assets, we consider the resulting products to be catalogs, not repositories. RIB uses
the Basic Interoperability Data Model (BIDM), which is an IEEE standard (1420.1), to improve
interoperability of catalogs on the Internet. This provides a strong back-end for the system.
However, when we examined this package, we found that it was missing many of the front-end
features we require, such as the ability to provide reviews and ratings on assets. It was clear that
many modifications would be necessary to adapt RIB for our purposes, so we did not review it in
detail.

6.0 Review of Available Systems

Another option for creating a new RES is to augment an existing system. In this case, we would
work together with the administrators of the existing system to determine what modifications would
be necessary in order for it to meet all of our stated requirements to make those modifications. The
RES would then be a new part of an existing system rather than a completely new stand-alone
system. The systems we examined for this option include:

8) Global Change Master Directory (GCMD) (see reference 11 in Section 9)

Some other packages were examined, but not reviewed in detail. A brief description of each of the
sites in the following list follows the detailed review of the sites listed above.

9) Ames Research Center Open Source Site (see reference 12 in Section 9)
10) Goddard Space Flight Center (BSFC) Open Source Site (see reference 13 in Section 9)

6.1 Global Change Master Directory (GCMD)

The GCMD is owned by NASA and is run by the Global Change Data Center within the Earth
Sciences Directorate at the Goddard Space Flight Center. Its goal is “to enable users to locate and
obtain access to Earth science data sets and services relevant to the global change and Earth
science research.”

6.1.1 Installation

24

Since the GCMD is an existing system, installation would not be the same as for the software
packages in the previous section. Here, installation would basically refer to the process by which
we would add our planned RES into the existing GCMD system. It is not clear how easy or difficult
this would be. According to the GCMD staff, creating a portal or view of a subset of materials
stored in the GCMD is relatively easy and they have done so for other groups. However, not all of
the reusable software assets we plan to have in the RES may be suitable for inclusion in the
GCMD, so this option may be of limited value. Creating a separate instance of the GCMD system
may be possible, but the staff indicated that it would be simpler for them to install and maintain it
than for them to teach us how to do so.

6.1.2 Meeting Requirements
The following table indicates how well the GCMD meets our stated requirements. Explanatory
notes follow, when applicable.

Table 4 – GCMD Requirements Matching

Requirement Number and Title Meets
Requirement?

1 – Users and User Information

1.1 – Support for User Types

R1.1.1 – Support for Consumer User YES
R1.1.2 – Support for Provider User YES

R1.1.3 – Support for Administrator User PARTIAL

R1.1.4 – Support for Content Manager User PARTIAL

1.2 – User Information Storage

R1.2.1 – Storage of Common User Information NO
R1.2.2 – Storage of Provider Information NO

1.3 – User Interface

R1.3.1 – User Profile Management NO

R1.3.2 – User Request Account Deletion NO

2 – Asset Storage and Management
2.1 – Asset Information Storage

R2.1.1 – Storage of Asset Information YES

R2.1.2 – Storage of Asset Resources PARTIAL

R2.1.3 – Storage of Asset Versions YES

R2.1.4 – Scanning of Asset Uploads NO
2.2 – Asset Discovery

R2.2.1 – Display Alphabetical Listing of Assets NO

R2.2.2 – Provide Search for Assets YES

R2.2.3 – Display Hierarchical Navigation of Assets YES

2.3 – Asset Management
R2.3.1 – Provider Registration of New Assets YES

R2.3.2 – Provider Modification of Assets YES

R2.3.3 – Provider Approval of Asset Modifications NO

R2.3.4 – Provider Request for Asset Removal YES *

25

Requirement Number and Title Meets
Requirement?

R2.3.5 – Provider Categorization of Assets YES

2.4 – Asset Feedback

R2.4.1 – Collection of Comments About Assets NO
R2.4.2 – Collection of Quantitative Feedback NO

R2.4.3 – User Registration of Asset Usage NO

R2.4.4 – Feedback by Contacting Providers YES

R2.4.5 – Display Feedback NO

2.5 – Asset Metrics and Reports
R2.5.1 – Collect Number of Downloads NO

R2.5.2 – Collect Number of External Links Accessed YES

R2.5.3 – Collect Number of Registered Users for Assets NO

R2.5.4 –Summarize Ratings from Quantitative Feedback NO

2.6 – Asset Access Control
R2.6.1 – Limit Access of Certain Users from Certain Assets NO

3 – Send and Manage Notifications

3.1 – Send Notifications for Asset Events

R3.1.1 – Send Notification on Modification of Asset YES

R3.1.2 – Send Notification on Submission of New Feedback NO
3.2 – Send Notifications for System Events

R3.2.1 – Send Administrative Notification for Asset Information YES

R3.2.2 – Send Administrative Notification for System Information YES

3.2 – Notification Management

R3.2.1 – User Addition of Notifications for Assets YES
R3.2.2 – User Removal of Notifications YES

4 – System Operations

4.1 – System Feedback

R4.1.1 – Collection of System Problems YES

R4.1.2 – Collection of Suggestions YES
R4.1.3 – Feedback by Contacting Administrators YES

4.2 – System Policies Compliance, Security, and Privacy

R4.2.1 – Verification of Provider Information NO

R4.2.2 –Verification of Provider through Secondary Method or Contact NO

R4.2.3 – Security of Sensitive Transmitted Information NO
R4.2.4 – Security of Stored Information NO

R4.2.5 – Deletion of Users for Policy Enforcement NO

R4.2.6 – Protection of Private Information YES

R4.2.7 – Compliance with other Technical, Accessibility, and Security Requirements YES

R4.2.8 – Policies Availability to Users YES
4.3 – Repository and Catalog

R4.3.1 – Function as a Repository PARTIAL

R4.3.2 – Function as a Catalog YES

26

Requirement Number and Title Meets
Requirement?

R4.3.3 – Selection of System Behavior by Provider NO

R4.3.4 – Enforcement of Asset Storage Limit NO

4.4 – Asset Cleanup
R4.4.1 – Asset Deprecation by Content Managers YES

R4.4.2 – Asset Removal by Administrators YES

4.5 – Data Integrity

R4.5.1 –Verification of Data by Providers NO

Requirement 1.1.3, Support for Administrator User, is partially met because user accounts are not
available, so Administrators cannot approve new accounts. All of the other parts of this requirement
(e.g., managing assets and approving submissions, modifications, and deletions) are met.

Requirement 1.1.4, Support for Content Manager User, is partially met because there is no specific
user role with these duties, but the role of content management is performed by Administrators.

Requirement 2.1.2, Storage of Asset Resources, is partially met because assets may only be
stored remotely and linked to by the system. Assets may not be uploaded and stored/hosted on
the system directly.

Requirement 2.3.4, Provider Request for Asset Removal, is met through Requirement 2.3.2,
Provider Modification of Assets, since Providers can remove access to their assets by modifying
the information available for it. Also, Requirement 4.1.3, Feedback by Contacting Administrators,
allows Providers to contact administrators in order to fully remove the asset.

Requirement 4.3.1, Function as a Repository, is partially met because the system has the
capability of storing very small data sets, typically only in the case where the data sets are in
danger of being lost. However, it cannot function as a general repository for all users and assets,
and therefore the following requirements that depend on having repository functionality are not
met:

• R2.1.4 – Scanning of Asset Uploads

• R2.5.1 – Collect Number of Downloads

• R4.3.3 – Selection of System Behavior by Provider

• R4.3.4 – Enforcement of Asset Storage Limit

• R4.5.1 – Verification of Data by Providers

Since the system does not have a feature that allows registration of user accounts, the following
requirements, all dependent on this ability, are not met:

• R1.2.1 – Storage of User Information

• R1.2.2 – Storage of Provider Information

27

• R1.3.1 – User Profile Management

• R1.3.2 – User Request Account Deletion

• R4.2.1 – Verification of Provider Information

• R4.2.2 – Verification of Provider through Secondary Method or Contact

• R4.2.5 – Deletion of Users for Policy Enforcement

6.1.3 Gap Analysis
The most obvious gaps would be the limited repository functionality and the lack of user accounts,
which means many of our requirements are not met. As the GCMD recommends that they
administer a separate instance of the system, it is not clear exactly how much effort it would take to
modify the GCMD system to meet our requirements. However, the indication is that many
modifications would be necessary, so the effort would be high.

6.1.4 Maintenance and Support
Since the GCMD recommended that they maintain the system, because that would be easier than
teaching us how to do it, the maintenance and support for the Software Reuse Working Group
would be minimal – the GCMD staff would take care of it. However, the large number of changes
that would need to be made for an instance to meet our requirements implies that a large amount
of maintenance and support would be required for the system, since it would be a non-standard
version of the system.

6.1.5 Summary
Significant effort would be required to modify the GCMD system to meet the identified
requirements. The GCMD is an existing system under the control of another project and adding
capabilities to support a reuse enablement system is currently not a goal of that project. If a
separate instance of the system were to be created for the reuse enablement system, estimates
indicate that it would take about the same amount of development effort as Savane to modify the
GCMD instance to meet our requirements. However, because of the GCMD’s large user base and
the close link between data and software, it is important that any new reuse enablement system
provide the GCMD with a data feed of relevant content (Software Reuse WG, 2005, RES Trade
Study). Out of our 54 requirements, the GCMD meets 26, partially meets 4, and does not meet 24.

6.2 Other Systems Inspected

There are other systems that provide software asset catalogs and/or repositories in addition to the
ones reviewed here. Two of these are the open source sites hosted by the NASA Ames Research
Center and the NASA Goddard Space Flight Center. There are two basic reasons these sites were
not reviewed in detail: the limited scope of their content and the limited functionality they provide.

As discussed further in the Reuse Enablement System (RES) Trade Study document, these sites
only distribute NASA-produced open source software, which places a strong limitation on what is
available. This prevents them from fully servicing the needs of the community of Earth science
software developers. In addition, they also have the common problem of primarily listing finished
products, which could be difficult for software developers to reuse when creating new assets,
rather than smaller software components, which developers desire more for reuse purposes.

Both sites list assets as links on a web page. The sites have grown somewhat since the trade
study was performed in fall 2005 and provide more assets now, but neither site has added an

28

underlying catalog/repository system. While this works well for their purposes, it would not meet the
community’s needs, where many other features are desired that could not easily be offered without
a real catalog/repository system behind the site. For these reasons, these sites are not suitable for
meeting the requirements of the RES, so we did not review them in detail.

7.0 Review Summary

As part of our evaluation process, members of the Working Group tested prototypes of the Savane
and XOOPS systems, our primary candidates for building the RES, at the 5th ESDS Working
Group Meeting, held November 14–16, 2006. An evaluation form was distributed, and asked for a
rating from 1 to 5 of how well each system met the requirements we had defined. We received a
total of seven responses, but not every person answered every question. The 1–5 ratings were
converted to percentages, with 1 being 0% and 5 being 100%, in order to make an estimate of how
satisfied the respondents were with the way the systems met our requirements. All results were
averaged together and graphed to provide a visual representation of how well the systems satisfied
our requirements. These graphs are presented below, with totals for the number of requirements
satisfied (75% or higher), not satisfied (35% or lower), and partially satisfied (between 35% and
75%). We also note that Savane and GForge are and both collaborative development
environments, so they share similar features and requirements. Savane was estimated to be more
flexible and easier to maintain than GForge, so we focused our efforts on Savane.

29

XOOPS Requirements Satisfaction

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1.
1.

1
1.

1.
2

1.
1.

3
1.

1.
4

1.
2.

1
1.

2.
2

1.
3.

1
1.

3.
2

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
2.

1
2.

2.
2

2.
2.

3
2.

3.
1

2.
3.

2
2.

3.
3

2.
3.

4
2.

3.
5

2.
4.

1
2.

4.
2

2.
4.

3
2.

4.
4

2.
4.

5
2.

5.
1

2.
5.

2
2.

5.
3

2.
5.

4
3.

1.
1

3.
1.

2
3.

2.
1

3.
2.

2
3.

3.
1

3.
3.

2
4.

1.
1

4.
1.

2
4.

1.
3

4.
2

4.
3.

1
4.

3.
2

4.
3.

3
4.

3.
4

4.
4.

1
4.

4.
2

4.
5.

1

• 26 Requirements Satisfied (75%-100%)
• 14 Requirements Partially Satisfied (35%-75%)
• 6 Requirements Not Satisfied (0%-35%)

• 18 Requirements Satisfied (75%-100%)
• 18 Requirements Partially Satisfied (35%-75%)
• 10 Requirements Not Satisfied (0%-35%)

Savane Requirements Satisfaction

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

1.
1.

1
1.

1.
2

1.
1.

3
1.

1.
4

1.
2.

1
1.

2.
2

1.
3.

1
1.

3.
2

2.
1.

1
2.

1.
2

2.
1.

3
2.

1.
4

2.
2.

1
2.

2.
2

2.
2.

3
2.

3.
1

2.
3.

2
2.

3.
3

2.
3.

4
2.

3.
5

2.
4.

1
2.

4.
2

2.
4.

3
2.

4.
4

2.
4.

5
2.

5.
1

2.
5.

2
2.

5.
3

2.
5.

4
3.

1.
1

3.
1.

2
3.

2.
1

3.
2.

2
3.

3.
1

3.
3.

2
4.

1.
1

4.
1.

2
4.

1.
3

4.
2

4.
3.

1
4.

3.
2

4.
3.

3
4.

3.
4

4.
4.

1
4.

4.
2

4.
5.

1

30

It is important to note that (lack of) satisfaction with the requirements does not necessarily
correspond to (not) meeting the requirements. For example, it is possible for the system to meet a
requirement technically, but respondents evaluate it as partially or not satisfied because of the
implementation. The evaluations of Savane and XOOPS in Sections 5.2 and 5.3 are based on the
technical ability of the system to meet the requirements. This does not consider how well the
system meets the requirements, only if it does or not. Requirements can be met even if the
implementation is less than ideal. The evaluations performed by the members of the Working
Group were more subjective in nature, providing ratings of how satisfied the respondents were with
the way the system met the requirements. This allows requirements that are technically met in
some way to be given lower ratings if they do not meet the requirements in the most satisfactory
way. Since the two evaluations had some differences in their perspective, some differences in the
results are expected. However, given those differences, the low number statistics in the Working
Group evaluations, the generally fewer responses for Savane than XOOPS (five or less compared
to seven or less), the lack of a one-to-one matching between evaluation questions and
requirements, and the variation in number of responses per question, the general agreement
between the Working Group evaluations and the ones in Sections 5.2 and 5.3 are good.
Requirements rated highly by the working group get a “yes” while low-rated requirements get a
“no”. The main difference is in the area of partially met/satisfied requirements. The dividing lines
between satisfied, partially satisfied, and not satisfied in the Working Group evaluations are
somewhat arbitrary, and shifting them could allow a closer match with the evaluations of Sections
5.2 and 5.3. The Working Group satisfaction evaluations provide general support for the technical
evaluations, so the technical evaluations are used as the basis of the gap analysis, development
effort estimates, and decision/conclusion.

8.0 Decision and Conclusion

As described in Sections 5 and 6, summarized in Table 5 below, XOOPS meets more and fails
fewer of our requirements than Savane. XOOPS met 40 requirements compared to Savane’s 24,
and only failed 9 requirements compared to Savane’s 20. It also has fewer requirements that are
partially met (5 compared to 10). Since XOOPS does a better job at meeting our requirements
overall, the amount of effort required to modify the system to meet our requirements is less than
that for Savane. In addition, XOOPS uses modules to provide functionality for the system, and
each module is a self-contained component. This makes it easier to modify XOOPS than Savane
since our modifications will be restricted to particular new or existing modules. When the base
XOOPS system is upgraded, there is little chance that it will affect our modifications. Since our
modifications will be isolated from the base system, maintaining our changes will be simpler.
Therefore, we have determined that XOOPS is the most suitable choice for developing a Reuse
Enablement System (RES) from an existing software package.

We also examined the Global Change Master Directory (GCMD), an existing system, for its
possible use as an RES for the community of Earth science software developers. In our evaluation,
it was roughly comparable to Savane in terms of requirements met, partially met, and unmet, and
therefore it is estimated that the development effort for modifying the GCMD to meet these
requirements would be similar to the effort to implement Savane. However, since the GCMD is an
existing system under the control of another project, such modifications would need to go through
the existing team for updates, support, and maintenance. In addition, adding capabilities to support
a reuse enablement system is currently not a goal of the GCMD project. Even if a separate
instance of the system were to be created for our use, the GCMD staff has indicated that it would
be preferable for them to install and maintain it than for them to teach us how to do so. Therefore, it

31

seems preferable to create the RES from an existing software package rather than to modify an
existing system like the GCMD to meet our needs and requirements.

Table 5 – Summary of Results

Approach
Studied

Requirements
Met

Requirements
Not Met

Requirements
Partially Met

Development
Effort Estimate
[staff-months]

XOOPS 40 9 5 8.12

Savane 24 20 10 34.01
GCMD 26 24 4 N/A

GForge 20 26 8 N/A

Comparing the level of effort to create the RES using XOOPS and Savane, XOOPS requires the
least amount of development, which indicates that XOOPS, an open source content management
system, should be used to create a prototype RES for internal NASA use.

8.1 Next Step

The long-term objective remains the establishment of a fully functional Reuse Enablement System
that will reduce the cost and development time for new Earth science and possibly space science
systems to allow NASA to better support scientific discovery and understanding. We have
accomplished important steps in defining the requirements for such a system and in identifying
XOOPS as a cost effective and compliant basis for the system. From here, plans for the design
and implementation of the system will be developed. Following that, a plan will be created to
establish and evaluate a working prototype system for internal NASA use using XOOPS. Based on
the evaluation of the working prototype system, a system for public use could be developed in the
future.

9.0 References

[1] Software Reuse portal web site – http://www.esdswg.org/softwarereuse
[2] Software Reuse collaboration site – http://www.sciencedatasystems.org/reuse/default.aspx
[3] GForge web site – http://gforge.org/
[4] Savane web site – https://gna.org/projects/savane
[5] XOOPS web site – http://www.xoops.org/
[6] Fedora Digital Repository System – http://www.fedora.info/
[7] JBoss Portal – http://www.jboss.org/products/jbossportal
[8] Liferay Portal – http://www.liferay.com/web/guest/products/portal
[9] Repository in a Box – http://icl.cs.utk.edu/rib/
[10] SourceMotel – https://sourcemotel.gsfc.nasa.gov/
[11] Global Change Master Directory (GCMD) – http://gcmd.nasa.gov/
[12] Ames Research Center Open Source site – http://opensource.arc.nasa.gov/
[13] Goddard Space Flight Center (GSFC) Open Source site – http://opensource.gsfc.nasa.gov/

32

Appendix A – Software Reuse Questionnaire

The majority of the survey consisted of multiple choice questions where each listed option was
ranked from 1 (not important at all) to 5 (very important). The following charts show the weighted
average results for the top few responses to two of the questions.

Question 7 – How important were the following factors in preventing you from reusing software
development artifacts developed outside your group?

Question 47 – In your opinion, how important would the following factors be in helping increase the
level of reuse within the Earth science community?

1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

Didn't know
where to look
for reusable

assets

Didn't know
suitable

reusable assets
existed

No assets
matched

requirements

Needed source
code, but not

available

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Earth science
catalog/repository

Use of open
source licensing

Eduation/guidance
on reuse

Standardized
support policy for
reused software

33

Appendix B – Enabling Systems Recommendation

The Software Reuse Working Group previously submitted a recommendation for a Reuse
Enablement System to NASA HQ. This appendix contains the content of that recommendation and
HQ's response to it.

� NASA should establish a system to facilitate the cataloging and distribution of reusable assets
for the Earth science community

� NASA should establish an effective mechanism for dissemination of reusable assets within the
Earth science community

� NASA should evaluate the technology options for the provision of a reuse enablement system
including:

� commercial reuse catalogs/repositories
� open source reuse catalogs/repositories
� use of existing publicly available catalogs/repositories
� custom build of a community-specific catalog

� Based on the conclusions of the technology evaluation, NASA should implement a reuse
enablement system

� NASA should develop guidelines and standards for the management and operation of a reuse
enablement system

Impact for the Working Group

� The reuse working group will evaluate the technology options for the provision of a reuse
enablement system

� The reuse working group will develop guidelines and standards for the management and
operation of a reuse enablement system

� The reuse working group will develop a proposal for the implementation of a reuse enablement
system based on the conclusions of the technology evaluation

� One additional FTE will be required for the balance of '05 fiscal year

Desired Decision

� HQ agreement to proceed with the evaluation of technology options and to provide funding for
the evaluation

� HQ agreement in principle to the establishment of a reuse catalog subject to the findings of the
evaluation

Headquarters' Response

� HQ thinks such a recommendation is premature and needs to await the results of a trade
study concerning the establishment of a reuse catalog

34

Appendix C – General Requirements

For several months in 2004, the Software Reuse Working Group collaborated to define a set of
requirements for a software Reuse Enablement System serving the Earth science community. This
appendix contains a list of those requirements as previously submitted to NASA HQ.

General Requirements

� The system will facilitate the distribution and reuse of software development artifacts across
the Earth and space science communities

� The reusable artifacts supported by the system will include software components and other
digital artifacts used in the software development process

� The system will run on industry standard hardware and operating system
� The system will support remote access through standard Internet browsers
� The system will support the automated collection of system and asset usage metrics
� The system will provide error handling for all capabilities
� The system shall be flexible to support changes in NASA policy and strategy

Search Requirements

� The system will allow users to browse and look at system content without registering
� The system will allow users to discover (search for and find) assets of interest using multiple

search mechanisms (e.g., keyword search or category search)
� The system will allow search results to be ordered in a number of ways (e.g., by category or

rating)

User Registration

� The system will allow new users to register with the system and the user role defined by the
registration will determine the user's access authority within the system

� Each user registration will require the approval of a system administrator
� The system will allow a user to update their user profile
� The system will allow registered users to provide system feedback
� The system will allow registered users to subscribe to system or asset events including events

such as new versions, updates, and comments supplied by other users

Asset Usage

� The system will allow a Consumer to acquire an asset from the system repository
� The system will allow a Consumer to register usage of an asset, indicating active usage of the

asset (this is different from downloading the asset)
� The system will provide a user forum for discussion and comments on assets
� The system will allow a Consumer to provide a rating and feedback on his/her experience with

a particular asset
� The system will allow posting of requests for reusable assets that currently are not in the

system

35

Asset Submission

� The system will allow a Provider to submit a new asset profile to the system
� The Provider may optionally upload artifacts associated with the asset
� Each asset submission will require the approval of a Content Manager before it can be

accessed by other system users
� The system will allow a Provider to update the information about an asset and change the

artifacts associated with the asset
� The system will allow Providers to subscribe to asset events including such events as

comments and new requests pertaining to their contribution

Content Management

� The system will allow users to review feedback on assets and allow the Content Manager to
remove feedback on assets (e.g., to make sure comments are on topic)

� The system will allow the Content Manager to review and approve asset submissions prior to
them being made available to the community

� The system will allow the Content Manager to review the assets and remove those which are
no longer relevant; this includes those that have poor reviews and/or no users

� The system will allow the Content Manager to review unsuccessful searches to capture
consumer demand for assets that are not registered

System Administration

� The system will allow Administrators to monitor the general operating state of the system and
perform designated routine tests to determine that the system is functioning properly

� The system will allow Administrators to manage user accounts and passwords
� The system will allow Administrators to monitor user feedback and use it to determine

evolutionary needs of the system and other users
� The system will allow Administrators to generate reports including metrics
� The system will send notifications to subscribed users of system issues or events

36

Appendix D – COCOMO 81 Description

The COCOMO (Constructive Cost Modeling) model developed by Barry Boehm provides a
method for estimating the cost, effort, and schedule involved in software development activities.
For our purposes here, we have made the estimate using COCOMO 81, the original version, which
provides a relatively simple way to estimate effort. We used the information available from the
University of Calgary’s Practical Software Engineering site (http://ksi.cpsc.ucalgary.ca/courses/451-
96/mildred/451/CostEffort.html#RTFToC9) to guide our estimates. Additional information can be
found at, for example, the Center for Software Engineering’s page at
http://sunset.usc.edu/research/COCOMOII/index.html.

The basic concept of the COCOMO 81 model is that the development effort can be expressed as
E=a*(size)b, with E in staff-months and size in KLOC. The factors a and b are constants that
change according to the estimate required. Projects are categorized as organic, semi-detached,
and embedded, primarily by their size.

Characteristics
Project Type Size Innovation Deadline/

Constraints
Development
Environment

Organic Smallish Little Not tight Stable

Semi-detached Medium Medium Medium Medium

Embedded Large Greater Tight Complex hardware /
customer interfaces

The basic model, which we used, only uses source size to determine the values of the constants a
and b, as given in the following table.

 Organic Semi-detached Embedded
a 2.4 3.0 3.6

b 1.05 1.12 1.20

Therefore, the effort (E) is given by the following equations, where S is the source size.

Mode Effort Formula
Organic E = 2.4 * (S1.05)

Semi-detached E = 3.0 * (S1.12)
Embedded E = 3.6 * (S1.20)

There is also an intermediate model, which uses 15 additional cost drivers as well as size, but for
our purposes, the simple model provides a useful estimate of the level of effort required for our gap
analysis.

37

Appendix E – Savane Gap Analysis

Below is the list of requirements not met by Savane, covered in Section 5.2, and an analysis for the
level of effort to meet them.

The components or subsystems considered for Savane include the database, the PHP frontend, the
Perl backend, Savane configuration, and other external software such as Mailman, CVS, Subversion,
etc.

As a guideline to help determine the complexity of the changes, and the maintenance they require, we
scored each requirement's changes on a scale of 0 to 10. We used the following calculations as a basis
for this score:

Complexity

Base: 2/10

���� +1 PHP frontend
���� +2 Database
���� +1 Perl backend
���� +2 Configuration
���� +0 Layout/theme change
���� +2 per external software

R1.1.3 – Support for Administrator User

Evaluation

The administrator has no interface to approve/disapprove changes to the project's entry in the
system. Once a project has been approved, the project managers may change the details of the
project without further approval.

Subsystems Requiring Modification

���� PHP frontend: accept changes without updating the database, notify the administrator(s)
of a change, provide UI for administrators to approve changes, change project deletion
function in UI to require administrator approval

���� Database: add tables/fields for pending changes

Complexity 5/10

Estimate Lines of Code

Language Lines of Code
SQL 50
PHP 500
Total 550

38

R1.1.4 – Support for Content Manager User

Evaluation

Project managers/owners can act as content managers for their respective project, but the system
does not support the concept of content managers for groups of projects. This requirement also
depends on unmet requirement 2.3.3 (Provider Approval of Asset Modifications).

Subsystems Requiring Modification

� PHP frontend: create UI for approving or rejecting pending changes to assets, create UI
to set certain users as content managers, create UI to define groups of content
management: both which users are content managers for a group, and which projects
belong to that group.

� Database: add tables/fields for content manager role, project groups that can be
managed, and which content managers can manage which groups.

Complexity 9/10

Estimate Lines of Code

Language Lines of Code
SQL 100
PHP 1500
Total 1600

R1.2.2 – Storage of Provider Information

Evaluation

Not supported.

Subsystems Requiring Modification

���� PHP frontend: add fields that are required upon submission of a new project, auto fill
fields if already approved for another project to verify, protect user input

���� Database: add tables and/or fields, queries for data management

Complexity 5/10

Estimate Lines of Code

Language Lines of Code
SQL 50
PHP 100
Total 150

39

R2.1.1 – Storage of Asset Information

Evaluation

The system does not store keyword information, nor allows for multiple categories.

Subsystems Requiring Modification

���� PHP frontend: require extra fields for new projects, display new project data in project
summary, allow for changing these fields by project owner, protect user input, validate
tags/keywords

���� Database: add tables and data for keywords and categories, with categories in heirarchy
���� Perl backend: update database with new project details, when project gets created

Complexity 6/10

Estimate Lines of Code

Language Lines of Code
SQL 50
Perl 100
PHP 500
Total 650

R2.1.4 – Scanning of Asset Uploads

Evaluation

Not supported.

Subsystems Requiring Modification

���� PHP frontend: on upload of a new file, process the file through virus checking, and
quarantine any “bad” file

���� Perl backend: create extra storage for bad files for each project
���� Configuration: add configuration about the storage of bad files
���� External software: add virus scanner software
���� External software: disable version control system, or provide a warning that version

control system is not virus checked

Complexity 10/10

Estimate Lines of Code

Language Lines of Code
SQL 50
Perl 100
PHP 100

Configuration 10
Virus Scan/Cron 5

Total 275

40

R2.2.1 – Display Alphabetical Listing of Assets

Evaluation

The system does not provide a full alphabetical list of all assets.

Subsystems Requiring Modification

���� PHP frontend: create a link that searches for *

Complexity 3/10

Estimate Lines of Code

Language Lines of Code
PHP 5
Total 5

R2.2.3 – Display Hierarchical Navigation of Assets

Evaluation

The system does not provide more than a one-level categorization of items. The hierarchical
navigation UI depends on unmet requirement 2.3.5 (Provider Categorization of Assets).

Subsystems Requiring Modification

���� PHP frontend: update display/navigation, provide UI for modification of categories
���� Database: add tables/fields for storing categories
���� Perl backend: update database with new asset information when project gets created

Complexity 6/10

Estimate Lines of Code

Language Lines of Code
SQL 50
Perl 100
PHP 500
Total 650

R2.3.3 – Provider Approval of Asset Modifications

Evaluation

The system has no mechanism to allow managers to approve/disapprove changes to an asset.
Providers can be approved to manage an asset, but individual changes are not provided for
review.

41

Subsystems Requiring Modification

� PHP frontend: create UI for uploading assets for pending submission, notify manager of
pending changes, provide restricted access to files for manager to view

� Database: add tables/fields for pending changes
� Perl: maintain database, provide notifications, move approved files after approval
� Configuration: add pending files directory and configuration
� External software: restrict ssh upload of files, only allow upload through UI
� External software: optionally restrict or remove usage of version control system

Complexity 10/10

Estimate Lines of Code

Language Lines of Code
PHP 1000
SQL 50
Perl 50

Configuration 50
Total 1150

R2.3.5 – Provider Categorization of Assets

Evaluation

Not supported.

Subsystems Requiring Modification

���� PHP frontend: provide UI for submission of category modification, notification to
administrator, UI for administrator approval/rejection

���� Database: add tables/fields for storing pending category change
Complexity 5/10

Estimate Lines of Code

Language Lines of Code
PHP 500
SQL 10
Total 510

R2.4.1 – Collection of Comments About Assets

Evaluation

Not supported.

42

Subsystems Requiring Modification

���� PHP frontend: UI to submit comment
���� Database: create fields/tables to store comments

Complexity 5/10

Estimate Lines of Code

Language Lines of Code
SQL 50
PHP 500
Total 550

R2.4.2 – Collection of Quantitative Feedback

Evaluation

Not supported.

Subsystems Requiring Modification

���� PHP frontend: user UI to submit or change rating feedback
���� Database: create fields/tables to collect ratings

Complexity 5/10

Estimate Lines of Code

Language Lines of Code
SQL 10
PHP 500
Total 510

R2.4.3 – User Registration of Asset Usage

Evaluation

Not supported.

Subsystems Requiring Modification

���� PHP frontend: UI to register/unregister for usage of software
���� Database: create fields/tables to keep track of registration

43

Complexity 5/10

Estimate Lines of Code

Language Lines of Code
SQL 10
PHP 100
Total 110

R2.4.4 – Feedback by Contacting Providers

Evaluation

The system allows any registered users to contact each other through the web interface, but does
not allow anyone to turn this feature off.

Subsystems Requiring Modification

���� PHP frontend: UI to allow provider to turn off contact feature
���� Database: create fields/tables to keep track of contact setting

Complexity 5/10

Estimate Lines of Code

Language Lines of Code
SQL 10
PHP 50
Total 60

R2.5.1 – Collect Number of Downloads

Evaluation

Not supported

Subsystems Requiring Modification

���� PHP frontend: create a link to a separate page for each download (refreshes
immediately to download)

���� Database: create fields/tables to keep track of how many times the download page was
accessed

Complexity 5/10

44

Estimate Lines of Code

Language Lines of Code
SQL 10
PHP 500
Total 510

R2.5.2 – Collect Number of External Links Accessed

Evaluation

Not supported.

Subsystems Requiring Modification

���� PHP frontend: create a link to a separate exit page (refreshes immediately to link)
���� Database: create fields/tables to keep track of how many times the link was accessed

Complexity 5/10

Estimate Lines of Code

Language Lines of Code
SQL 10
PHP 500
Total 510

R2.5.3 – Collect Number of Registered Users for Ass ets

Evaluation

Not supported. This depends on unmet requirement 2.4.3 (User Registration of Asset Usage).

Subsystems Requiring Modification

���� PHP frontend: report that shows members stats about their assets.

Complexity 3/10

Estimate Lines of Code

Language Lines of Code
PHP 500
Total 500

45

R2.5.4 – Summarize Ratings from Quantitative Feedba ck

Evaluation

Not supported. This depends on unmet requirement 2.4.2 (Collection of Quantitative Feedback).

Subsystems Requiring Modification

���� PHP frontend: report that shows members stats about their assets’ feedback

Complexity 3/10

Estimate Lines of Code

Language Lines of Code
PHP 500
Total 500

R2.6.1 – Limit Access of Certain Users from Certain Assets

Evaluation

Not supported.

Subsystems Requiring Modification

���� PHP frontend: manager UI to restrict categories or individual assets to groups of users or
individual registered users, block asset pages for restricted users

���� Database: create fields/tables to keep track of which users or groups can access which
assets or categories

Complexity 5/10

Estimate Lines of Code

Language Lines of Code
PHP 500
SQL 100
Total 600

R3.1.1 – Send Notification on Modification of Asset

Evaluation

Not supported. This depends on unmet requirements 2.3.3 (Provider Approval of Asset
Modifications) and 3.3.1 (User Addition of Notifications for Assets).

46

Subsystems Requiring Modification

���� PHP frontend: when an administrator or manager approves changes, send an e-mail to
anyone who is registered for notifications

Complexity 3/10

Estimate Lines of Code

Language Lines of Code
PHP 100
Total 100

R3.1.2 – Send Notification on Submission of New Fee dback

Evaluation

Not supported. This depends on unmet requirements 2.4.1 (Collect Feedback).

Subsystems Requiring Modification

� PHP frontend: UI for providers to indicate they want to be notified on new feedback, e-
mail a provider whenever new feedback is left.

Complexity 3/10

Estimate Lines of Code

Language Lines of Code
PHP 100
Total 100

R3.2.1 – Send Administrative Notification for Asset Information

Evaluation

Notifications can be posted to the asset, but there is no mechanism to send them out. This
depends on unmet requirements 3.3.1 (User Addition of Notifications for Assets).

Subsystems Requiring Modification

� PHP frontend: send e-mail notification to all users requesting notifications whenever
something new is posted to the asset.

47

Complexity 3/10

Estimate Lines of Code

Language Lines of Code
PHP 100
Total 100

R3.2.2 – Send Administrative Notification for Syste m Information

Evaluation

Notifications can be posted about the system, but there is no mechanism to send them out. This
depends on unmet requirements 3.3.1 (User Addition of Notifications for Assets).

Subsystems Requiring Modification

� PHP frontend: send e-mail notification to all users requesting notifications whenever
something new is posted to the asset.

Complexity 3/10

Estimate Lines of Code

Language Lines of Code
PHP 100
Total 100

R3.3.1 – User Addition of Notifications for Assets

Evaluation

Not supported.

Subsystems Requiring Modification

� PHP frontend: UI options for users to receive notifications about: the system, categories,
or individual assets, offer notification option when registering asset usage

� Database: create tables/fields to keep track of different notifications for each user

Complexity 5/10

48

Estimate Lines of Code

Language Lines of Code
PHP 500
SQL 100
Total 600

R3.3.2 – User Removal of Notifications

Evaluation

Not supported. This depends on unmet requirement 3.3.1 (User Addition of Notifications for
Assets).

Subsystems Requiring Modification

� PHP frontend: UI with options to stop receiving notifications

Complexity 3/10

Estimate Lines of Code

Language Lines of Code
PHP 100
Total 100

R4.2.1 – Verification of Provider Information

Evaluation

Not supported. This depends on unmet requirement 1.2.2 (Storage of Provider Information).

Subsystems Requiring Modification

� PHP frontend: user interface to approve/reject a provider
� Perl backend: update database with new user information upon approval

Complexity 6/10

Estimate Lines of Code

Language Lines of Code
PHP 500
Perl 100

Total 600

49

R4.2.2 – Verification of Provider through Secondary Method or Contact

Evaluation

Not supported. This depends on unmet requirement 4.2.1 (Verification of Provider Information).

Subsystems Requiring Modification

� PHP frontend: required fields for contact information
� Database: add required fields for contact information

Complexity 5/10

Estimate Lines of Code

Language Lines of Code
PHP 100
SQL 10
Total 110

R4.2.3 – Compliance with Other Technical, Accessibi lity, and Security Requirements

Evaluation

The system does not follow all of the policies for NASA web sites, such as the standard NASA
header and footer information.

Subsystems Requiring Modification

� PHP frontend: modify files for display
� Layout: add header and footer information.

Complexity 3/10

Estimate Lines of Code

Language Lines of Code
PHP 50

HTML 100
Total 150

R4.2.8 – Policies Availability to Users

Evaluation

Not supported.

50

Subsystems Requiring Modification

� Layout: add documentation to site using tools

Complexity 2/10

Estimate Lines of Code

Language Lines of Code
HTML 100
Total 100

R4.3.4 – Enforcement of Asset Storage Limit

Evaluation

Not supported.

Subsystems Requiring Modification

� Configuration: create filesystem quotas for users and/or groups.

Complexity 4/10

Estimate Lines of Code

Language Lines of Code
Configuration 10

Total 10

R4.4.1 – Asset Deprecation by Content Managers

Evaluation

Not supported. This depends on unmet requirement 1.1.4 (Content Manager).

Subsystems Requiring Modification

� PHP frontend: user interface for toggling deprecation flag
� Database: add field for deprecation flag

Complexity 5/10

51

Estimate Lines of Code

Language Lines of Code
PHP 100
SQL 5
Total 105

52

Appendix F – XOOPS Gap Analysis

Below is the list of requirements not met by XOOPS, covered in Section 5.3, and an analysis for the
level of effort to meet them.

The components or subsystems considered for XOOPS include the database, the PHP engine,
XOOPS configuration, and other external software such as Mailman, CVS, Subversion, etc.

As a guideline to help determine the complexity of the changes, and the maintenance they require, we
scored each requirement's changes on a scale of 0 to 10. We used the following calculations as a basis
for this score:

Complexity

Base: 0/10

���� +1 PHP engine
���� +2 Database
���� +1 Configuration
���� +1 Layout/theme change
���� +2 per external software

R2.1.4 – Scanning of Asset Uploads

Evaluation

Not supported. Currently, the system can accept uploaded files (via a download module), but has
no mechanism to automatically run virus scanning software. We need a mechanism to run a virus
scan and handle the uploaded file.

Subsystems Requiring Modification

� PHP frontend: on upload of a new file, process the file through virus checking tool and
quarantine any “bad” file.

� Configuration: add configuration about the storage of bad files.
� External software: add virus scanner software

Complexity 4/10

Estimate Lines of Code

Language Lines of Code
PHP 300

Configuration 10
Virus Scan/Cron 5

Total 315

53

R2.2.1 – Display Alphabetical Listing of Assets

Evaluation

Not supported. This feature is not provided by the default download module, but is provided by at
least one download module available at the official XOOPS site’s module repository. This module
or one with similar functionality would have to be installed in order to meet the requirement. Module
installation is a simple and easy process, and this has been done on the prototype test site already.
The level of effort needed to fulfill this requirement is therefore trivial.

Subsystems Requiring Modification

� External software: module for alphabetical listing.

Complexity 2/10

Estimate Lines of Code

Language Lines of Code
Configuration 10

Total 10

R2.3.3 – Provider Approval of Asset Modifications

Evaluation

The system does provide a mechanism for approving modifications, but Providers are not the ones
to do this by default, Administrators are. However, Administrators can work together with Providers
on the approval process.

Requirement 2.3.3, Provider Approval of Asset Modifications, is partially met because the Provider
is not by default the user who approves changes. The Administrators and/or Content Managers will
have this role, but can work together with Providers to meet the requirement. This requirement
would be met through this collaborative effort to approve modifications to assets, and would not
require additional coding in this case. Modifying the system to redirect changes to the Providers
would be a more difficult task.

Subsystems Requiring Modification

� PHP frontend: create UI for uploading assets for pending submission and/or notify
providers of changes that match their asset, provide providers with some capability to view
changes

� Database: add tables/fields for pending changes and to associate providers with assets.

Complexity 3/10

54

Estimate Lines of Code

Language Lines of Code
PHP 1000
SQL 50
Total 1050

R2.4.3 – User Registration of Asset Usage

Evaluation

There is no way for users to register their active usage of an asset. Another module that provides
this feature has not been located, so we would have to code this feature ourselves. The difficulty of
this task would depend on how advanced we wanted to make the feature and how we decided to
incorporate it into the existing XOOPS system. One of the simpler solutions is to provide a web
form where users can provide some form of contact information and the name of the asset the wish
to register, and submitting the form sends the information to the Administrator(s) of the system.
More advanced solutions would be to write a new module providing this feature or modifying the
code of the download module to provide a similar feature.

Subsystems Requiring Modification

� PHP frontend: UI to register/unregister usage of software
� Database: create fields/tables to keep track of registration

Complexity 3/10

Estimate Lines of Code

Language Lines of Code
PHP 500
SQL 10
Total 510

R2.4.4 – Feedback by Contacting Providers

Evaluation

The default downloads module only allows a web site link for additional contact information and
does not identify the submitter. For web links and assets stored remotely, we assume the site
hosting the asset would contain the required contact information. This requirement can be more
fully met by installing a different downloads module. At least one downloads module available at
the official XOOPS site’s module repository provides more contact information for providers with
the submitted downloads in addition to a web site address.

55

Subsystems Requiring Modification

� PHP frontend: store and associate provider information with download, UI to allow
provider to turn off contact feature

� Database: create fields/tables to keep track of contact setting

Complexity 3/10

Estimate Lines of Code

Language Lines of Code
PHP 200
SQL 10
Total 210

R2.5.3 – Collect Number of Registered Users for Ass ets

Evaluation

Not supported. This requirement is not met because Requirement 2.4.3, User Registration of Asset
Usage, is not met. In the process of adding the feature to register asset usage, a method for
collecting metrics on the number of users who have registered usage of a particular asset would be
created.

Subsystems Requiring Modification

� PHP frontend: report that shows members stats about their assets.

Complexity 1/10

Estimate Lines of Code

Language Lines of Code
PHP 500
Total 500

R4.2.2 – Verification of Provider through Secondary Method or Contact

Evaluation

Not supported. There is no place for users to put such secondary contact information on their
registration. As for Requirement 1.2.2, such information could be added to the user profile after
registering. This is one option, but would require all users who wish to be Providers to register as
Consumers first, and then provide the necessary information required to process a change to the
Provider role. Another solution would be to modify the XOOPS code to request the necessary
information during the registration process.

56

Subsystems Requiring Modification

� PHP frontend: required fields for contact information
� Database: add required fields for contact information

Complexity 3/10

Estimate Lines of Code

Language Lines of Code
PHP 200
SQL 10
Total 210

R4.2.3 – Security of Sensitive Transmitted Informat ion

Evaluation

By default XOOPS does not use a secure connection for transmission by default, but it has the
ability to accept connections through SSL, if set up and configured that way. This requirement can
be met by setting up an SSL page for use with user logins, then configuring XOOPS to use this
page. Making the configuration change is simple since XOOPS has an option for using SSL logins.
Most of the effort needed to meet this requirement would be in constructing the SSL page for use
by XOOPS.

Subsystems Requiring Modification

� Configuration: installation with https support

Complexity 1/10

Estimate Lines of Code

Language Lines of Code
Configuration 10

Total 10

R4.2.7 – Compliance with Other Technical, Accessibi lity, and Security Requirements

Evaluation

The system follows some, but not all of the policies for NASA web sites, such as the standard
NASA header and footer information.

57

Subsystems Requiring Modification

� PHP frontend: modify files for display
� Layout: add header and footer information

Complexity 2/10

Estimate Lines of Code

Language Lines of Code
PHP 50

HTML 100
Total 150

R4.2.8 – Policies Availability to Users

Evaluation

Not supported. There is no specific feature available for making policies available to users.
However, it can be met easily by providing the policies or links to them somewhere on the XOOPS
site, in an appropriate section and clearly labeled. The work necessary to meet this requirement is
minimal.

Subsystems Requiring Modification

� Layout: add documentation to site using tools

Complexity 1/10

Estimate Lines of Code

Language Lines of Code
HTML 100
Total 100

R4.3.1 – Function as a Repository

Evaluation

Not supported. The default downloads module does not have the ability to accept uploaded files.
This feature is provided by at least one module in the repository at the official XOOPS site, so
installing this or another module with similar functionality would be necessary to meet this
requirement.

58

Subsystems Requiring Modification

� Configuration: install upload module

Complexity 1/10

Estimate Lines of Code

Language Lines of Code
Configuration 10

Total 10

R4.3.3 – Selection of System Behavior by Provider

Evaluation

Not supported. This feature is provided by requirement 4.3.1 (Function as a Repository).

Subsystems Requiring Modification

� PHP frontend: UI for providers to choose how they want to store an asset.

Complexity 1/10

Estimate Lines of Code

Language Lines of Code
PHP 100
Total 100

R4.4.1 – Asset Deprecation by Content Managers

Evaluation

Not supported. There is only an option to remove/delete assets, in fulfillment of Requirement 4.4.2.
There is no option to keep the asset in the system, but not display it publicly. Content Managers
may be able to mark or otherwise identify which assets should be deprecated and deleted by
Administrators, but this alone would note deprecate the asset. We would have to code this feature.

Subsystems Requiring Modification

� PHP frontend: UI for toggling deprecation flag with appropriate permissions
� Database: add field for deprecation flag

59

Complexity 3/10

Estimate Lines of Code

Language Lines of Code
PHP 100
SQL 5
Total 105

R4.5.1 – Verification of Data by Providers

Evaluation

Requirement 4.5.1, Verification of Data by Providers, is partially met because information such as a
checksum can be included in the asset description. There is no dedicated feature for this, however.

Subsystems Requiring Modification

� PHP frontend: add checksum fields when submitting new assets, perform check
� Database: add field to store checksum and checksum type

Complexity 3/10

Estimate Lines of Code

Language Lines of Code
PHP 200
SQL 5
Total 205

60

Appendix G – Glossary of Terms

•••• Administrator – a user who controls, operates, and manages the system

•••• Asset – an item produced at some point in the software development life cycle that is recognized as
having a particular value

•••• Catalog – a system that stores links to assets, but does not store/host the assets themselves

•••• Consumer – a user, either registered or unregistered, who is allowed to access or otherwise use assets
in the system, subject to their license terms

•••• Content Manager – a user whose main role is to review content submitted to the system (e.g., a new
asset) for appropriateness and relevance

•••• Portal – a system that serves as a single point of access to varied information and provides a
consistent look and feel for accessing that information

•••• Provider – a registered user who has been granted permission to upload asset resources and
metadata to the system

•••• Registered user – a user who has completed a registration process in order to obtain an account on the
system

•••• Repository – a system that stores/hosts the actual assets themselves

•••• Submit – refers to the process by which information is provided to the system for inclusion in the
system

•••• Unregistered user – a user who has not completed a registration process in order to obtain an account
on the system

•••• User – any person who accesses the system

•••• Web site – a collection of Web pages (documents), images, etc. available on the World Wide Web

